Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field
نویسندگان
چکیده
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
منابع مشابه
Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes
In this letter, we experimentally demonstrate direct correlation between efficiency droop and carrier overflow in InGaN/GaN green light emitting diodes (LEDs). Further, we demonstrate flat external quantum efficiency curve up to 400 A/cm in a plasma assisted molecular beam epitaxy grown N-polar double quantum well LED without electron blocking layers. This is achieved by exploring the superior ...
متن کاملCurrent injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes
Current injection efficiency and its impact on efficiency-droop in InGaN single quantum well (QW) based light-emitting diodes (LEDs) are investigated. The analysis is based on current continuity relation for drift and diffusion carrier transport across the QW-barrier system. A self-consistent 6-band k p method is used to calculate the band structure for InGaN QW. The analysis indicates that the...
متن کاملGaN microdisk light emitting diodes
Articles you may be interested in Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes Appl. High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light-emitting diodes
متن کاملBlue light emitting diode exceeding 100 % quantum efficiency
1 Introduction GaN-based light-emitting diodes (LEDs) deliver the desired high efficiency only at relatively low injection current density [1]. At the elevated current densities required in practical high-brightness applications , the efficiency is substantially reduced. This efficiency droop phenomenon has been intensely investigated for a number of years, but the physical mechanisms behind it...
متن کاملElectron leakage effects on GaN-based light-emitting diodes
Nitride-based light-emitting diodes suffer from a reduction (droop) of the internal quantum efficiency (IQE) with increasing injection current. Using advanced device simulation, we investigate the impact of electron leakage on the IQE droop for different properties of the electron blocker layer (EBL). The simulations show a strong influence of the EBL acceptor density on the droop. We also find...
متن کامل